

MODEL OF THREATS IN INFORMATION NETWORKS

Robbins, J. G.^{1*}, *Rolf Jergman*²

1The City University of New York, Kingsborough, USA 2University of Sfax, Tunisia * Corresponding author: serchre43an@gmail.com

Abstract

In years based on a fairly detailed analysis of many possible threats [4-9], an example and method of building their model is given, which is a step in determining the set of necessary means of protecting information objects of the corresponding distributed computer network (ROM) and building protection systems. However, the model proposed in [3] does not answer the question of the mechanisms of implementation of each of the many possible threats, and therefore does not specify the composition of such protection systems. Therefore, a more advanced version of the threat model is proposed below. In this model, as in [3], the security features of information objects that may be violated are defined - confidentiality (k), integrity (c), accessibility (e) and qualitative assessment of the probability of threats and levels of damage (harm) to each of the types of violations.

Kewords:

Possible threats, computer, network, mechanisms, model.

Introduction

As in previous materials, the method of developing such a model is that in one of the columns of the table is entered as complete a list of types of threats; in the given example such list is given in column 2. Further for each of possible threats by their analysis (possibly also by a method of expert estimations) it is necessary to define:

1. The likelihood of such threats. Qualitative estimates can be used as the first step in determining such a probability. The table can provide qualitative estimates

of their probability \Box unacceptably high, very high, high, significant, medium, low, neglected low (column 3);

2. Violation of which functional properties of information security (column 4) it is aimed at (violation of confidentiality \Box k, integrity \Box ts, accessibility \Box d);

3. Possible (expected) level of damage (column 5). An example of this assessment is also given on a qualitative scale (absent, low, medium, high, unacceptably high). The presence of such assessments, even on a qualitative scale, allows to justify the need to provide means of protection of each of the security features of information;

4. Mechanisms of realization (possible ways of realization) of threats (column 6).

N⁰	Type of threats	Probability	What	The	Implementation			
			breaks	level of	mechanism			
				damage				
1	2	3	4	5	6			
	Network monitoring (intelligence)							
1	Intelligence, traffic	high	k, c, d	from	Interception of			
	analysis			the	information			
				essence	transmitted in			
					unencrypted form in			
					a broadcast medium,			
					the lack of a			
					dedicated			
					communication			
					channel between			
					ROM objects.			
	Unauthorized access to information resources with ROM							
1	Substitution (imitation)	high	k, c, d	average	Falsification (forgery			
	of a trusted object or				of IP network			
	subject of ROM with				addresses, replay of			
	forgery of network				messages in the			

Threat model in ROM

N⁰	Type of threats	Probability	What	The	Implementation
			breaks	level of	mechanism
				damage	
1	2	3	4	5	6
	addresses of those				absence of a virtual
	objects that attack				channel, insufficient
					identification and
					authentication in the
					presence of a virtual
					channel
2	Change routing	Let's not	k, c, d	low	Changing routing
		get high			settings and the
					content
					of transmitted
					information
					due to lack of
					control over the
					route of messages or
					lack of filtering of
					packets with the
					wrong address
3	Selection of	high	k, c, d	high	Using the
	information flow and				shortcomings of
	its preservation				remote search
					algorithms by
					introducing
					erroneous objects
					into a distributed
					computing system
					("man in the middle"
					attacks).

	Threat model in KOW							
№	Type of threats	Probability	What	The	Implementation			
			breaks	level of	mechanism			
				damage				
1	2	3	4	5	6			
4	Overcoming access	high	k, c, d	high	Using the			
	administration				shortcomings of			
	systems to				identification and			
	workstations, local				authentication			
	networks and secure				systems based on			
	information object				user attributes			
	based on attributes of				(identifiers,			
	workstations or means				passwords, biometric			
	of access control and				data,			
	routing (masking) of				etc.). Insufficient			
	relevant networks -				identification and			
	(firewalls, proxy				authentication of			
	servers, routers, etc.).				ROM objects, in			
					particular sender			
					addresses			
	Specific threats to information objects							
1	Overcoming the	low	То	high	Use of leaks through			
	cryptographic security				technical channels,			
	of intercepted				removal from the			
	information objects				network and specific			
					virus attacks by			
					implementing			
					spyware with the			
					disclosure of key			
					sets			
2	Overcoming the	low	То	high	Unauthorized access			
	cryptographic security				to information			

N⁰	Type of threats	Probability	What	The	Implementation
			breaks	level of	mechanism
				damage	
1	2	3	4	5	6
	of information objects				objects using the
	of workstations				shortcomings of
					identification and
					authentication
					systems based on
					user attributes
					(identifiers,
					passwords, biometric
					data, etc.) with the
					disclosure of key
					sets
3	Modification of	high	c, d	high	Modification or
	transmitted data, data				substitution of
	or program code stored				information objects
	in the elements				(program codes) or
	of computer systems.				their parts by
					implementing
					destructive software
					or changing the logic
					of the program file
					using special types
					of virus attacks that
					can commit a
					violation of integrity
					Distortion of a
					certain number of
					symbols of an

Mo	Tune of threats	Drobability	What	The	Implementation
JNG	Type of uneats	Probability	what		Implementation
			breaks	level of	mechanism
				damage	
1	2	3	4	5	6
					information object
					with the use of
					special effects on
					information by
					technical channels in
					the local network or
					in the elements of
					the distributed
					network
4	Service blocking or	high	d	high	Use of "Syn Flood"
	overloading of access				attacks, transmission
	control system requests				of incorrect,
	(denial of service)				specially selected
					requests to the
					attacked object
					Use of anonymous
					(or modified
					address) service
					requests (spam) or
					virus attacks of a
					special type

The availability of such information allows to build a more substantive general model of the protection system; assess the value of residual risk as a function of security for each of the functional properties of security; determine the structure of the protection system and its main components.

It should be noted that the estimates of the probability and magnitude of possible damage to each of the threats in this example of a threat model are

illustrative. For cases of specific ROM, these values must be determined by specialists of the protection service of the enterprise according to separate methods.

Thus, the analysis of many possible remote threats in distributed networks and mechanisms of their implementation proposed in the article make it possible to determine the components of security policy of information objects of the relevant ROM and the set of necessary means of protection against information objects from possible threats from the ROM environment.

References

- Matov O.Ya., Vasylenko VS, Budko MM Estimation of security in local area networks. // Kyiv: News of the Academy of Engineering Sciences of Ukraine. 2005, № 2, pp. 59 – 73.
- 2. MaximumSecurity: AHacker's Guide to Protecting Your Internet Site and Network (http://zaphod. Redwave.net/books/hackg/index.htm).
- 3. TCP under sight (http://www.hackzone. Ru / articles / tcp.html);
- 4. Some FTP problems (<u>http://www.hackzone.ru/articles/ftp.html</u>);
- 5. The attack on the DNS or Mr. ichnyy Nightmare network administrator (<u>http://www.hackzone.ru/articles/dn-poison.html s</u>)
- 6. . Medvedovsky ID Semyanov PV Leonov DG "Attack on the Internet" M .: PEC Publishing House 1999;
- 7. Sobolev KI Security Research with Windows NT 4.0 HackZone: Hacking Area. № 1-2-1998;
- 8. Buffer overflow in WIN32 (<u>http://www.void.ru/stat/9907/20.html</u>);
- EXPLOIT buffer overflow on PERL (http: //www.void. Ru / stat / 0102 / 02.html).
- 10.Morgan, P. A. (2013). Shaping an Ethical Workplace Culture. In SHRM Foundation's Effective Practice Guidlines Series (pp. 1-44). USA.
- 11.National Business Ethics Survey Ethics Resource Centre. (2011). *SCCE'S Social Network*. Retrieved 05 03, 2021, from https://community.corporatecompliance.o
- 12.rg/

13.Offorbike, S. A., NNADI, C. S., & AGU, J. C. (2018). Effect of Managing Employee Attitudes for Improved. *International Journal of Academic Research in Economics and Management Sciences*, 7(4), 64-77.